Maximizing algebraic connectivity for certain families of graphs
نویسنده
چکیده
We investigate the bounds on algebraic connectivity of graphs subject to constraints on the number of edges, vertices, and topology. We show that the algebraic connectivity for any tree on n vertices and with maximum degree d is bounded above by 2 (d− 2) 1 n + O ( lnn n2 ) . We then investigate upper bounds on algebraic connectivity for cubic graphs. We show that algebraic connectivity of a cubic graph of girth g is bounded above by 3 − 2 cos (π/ ⌊g/2⌋) , which is an improvement over the bound found by Nilli [A. Nilli, Electron. J. Combin., 11(9), 2004]. Finally, we propose several conjectures and open questions. AMS Subject Classification: 05C50, 68M10, 05C80.
منابع مشابه
Eccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملGraphs with given diameter maximizing the algebraic connectivity
Article history: Received 21 September 2009 Accepted 28 June 2010 Submitted by R.A. Brualdi AMS classification: 05C50
متن کاملUpper Bounds on Algebraic Connectivity via Convex Optimization
The second smallest eigenvalue of the Laplacian matrix L of a graph is called its algebraic connectivity. We describe a method for obtaining an upper bound on the algebraic connectivity of a family of graphs G. Our method is to maximize the second smallest eigenvalue over the convex hull of the Laplacians of graphs in G, which is a convex optimization problem. By observing that it suffices to o...
متن کاملA note on polyomino chains with extremum general sum-connectivity index
The general sum-connectivity index of a graph $G$ is defined as $chi_{alpha}(G)= sum_{uvin E(G)} (d_u + d_{v})^{alpha}$ where $d_{u}$ is degree of the vertex $uin V(G)$, $alpha$ is a real number different from $0$ and $uv$ is the edge connecting the vertices $u,v$. In this note, the problem of characterizing the graphs having extremum $chi_{alpha}$ values from a certain collection of polyomino ...
متن کاملDistributed algebraic connectivity estimation for undirected graphs with upper and lower bounds
The algebraic connectivity of the graph Laplacian plays an essential role in various multi-agent control systems. In many cases a lower bound of this algebraic connectivity is necessary in order to achieve a certain performance. Lately, several methods based on distributed Power Iteration have been proposed for computing the algebraic connectivity of a symmetric Laplacian matrix. However, these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1412.6147 شماره
صفحات -
تاریخ انتشار 2014